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Doxorubicin (DOX) is widely used for treating human cancers, but can
induce heart failure through an undefined mechanism. Herein we
describe a previously unidentified signaling pathway that couples
DOX-inducedmitochondrial respiratory chain defects and necrotic cell
death to the BH3-only protein Bcl-2-like 19kDa-interacting protein 3
(Bnip3). Cellular defects, including vacuolization and disrupted mito-
chondria, were observed in DOX-treated mice hearts. This coincided
with mitochondrial localization of Bnip3, increased reactive oxygen
species production, loss of mitochondrial membrane potential, mito-
chondrial permeability transition pore opening, and necrosis. Inter-
estingly, a 3.1-fold decrease in maximal mitochondrial respiration
was observed in cardiac mitochondria of mice treated with DOX. In
vehicle-treated control cells undergoing normal respiration, the re-
spiratory chain complex IV subunit 1 (COX1) was tightly bound to
uncoupling protein 3 (UCP3), but this complex was disrupted in cells
treated with DOX. Mitochondrial dysfunction induced by DOX was
accompanied by contractile failure and necrotic cell death. Con-
versely, shRNA directed against Bnip3 or a mutant of Bnip3 defective
for mitochondrial targeting abrogated DOX-induced loss of COX1-
UCP3 complexes and respiratory chain defects. Finally, Bnip3−/− mice
treated with DOX displayed relatively normal mitochondrial mor-
phology, respiration, and mortality rates comparable to those
of saline-treated WT mice, supporting the idea that Bnip3 underlies
the cardiotoxic effects of DOX. These findings reveal a new signaling
pathway in which DOX-induced mitochondrial respiratory chain
defects and necrotic cell death are mutually dependent on and oblig-
atorily linked to Bnip3 gene activation. Interventions that antagonize
Bnip3 may prove beneficial in preventing mitochondrial injury and
heart failure in cancer patients undergoing chemotherapy.
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Doxorubicin (DOX) and related anthracyclines are widely
used in chemotherapeutic regimens to treat childhood and

adult malignancies (1, 2). Despite the clinical efficacy of these
agents, however, it is well established that cancer patients un-
dergoing DOX treatment are susceptible to acute and chronic
cardiac anomalies, including aberrant arrhythmias, ventricular
dysfunction, and heart failure (1, 2). Thus, a major challenge in
managing cancer patients treated with DOX is to minimize
DOX’s cardiotoxic effects without compromising its antitumor
properties. The molecular signaling pathways that underlie the
cardiotoxic effects of DOX remain cryptic. Several theories, in-
cluding mitochondrial dysfunction, increased reactive oxygen
species (ROS) production, defects in iron handling, and con-
tractile failure, have been proposed as plausible underlying
mechanisms (3–5). Moreover, certain transcription factors in-
volved in the regulation of genes crucial for vital processes, in-
cluding metabolism and cell survival, are known to be altered
during DOX treatment (6, 7).

Despite these findings, however, a unifying explanation for
the cardiotoxic effects of DOX has not been advanced. Thus,
information regarding the signaling pathways and molecular
effectors that underlie the cardiotoxic effects of DOX is limited.
In this regard, mitochondrial injury induced by DOX has been
reported (5). The mitochondrion plays a central role in regulating
energy metabolism and cellular respiration, and was recently
identified as a signaling platform for cell death by apoptosis and
necrosis, respectively (8). Given that the mitochondrion regulates
these vital cellular processes, we reasoned that it may be a conver-
gence point for the cytotoxic effects of DOX. This view is sup-
ported by a recent report demonstrating impaired mitochondrial
iron transport and ROS production by DOX (3). The signaling
pathways and molecular effectors that impinge on the mitochon-
drial defects associated with DOX toxicity remain undetermined.
Previous work by our laboratory established the Bcl-2-like

19kDa-interacting protein 3 (Bnip3) as a critical regulator of
mitochondrial function and cell death of cardiac myocytes dur-
ing hypoxic injury (9). Indeed, Bnip3 gene activation can trigger
mitochondrial perturbations consistent with mitochondrial
permeability transition pore (mPTP) opening, loss of mito-
chondrial membrane potential (ΔΨm), and cell death with
features of necrosis (9, 10). Notably, genetic interventions that an-
tagonize the expression or integration of Bnip3 into mitochondrial
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membranes are each sufficient to suppress mitochondrial defects
and cell death of ventricular myocytes in vitro and in vivo (11).
Moreover, Bnip3 can promote autophagy/mitophagy in certain
cells; however, this property of Bnip3 is obscure and likely occurs in
a cell- and context-specific manner, given that we and others have
found that Bnip3 can promote maladaptive autophagy, resulting in
cell death (10, 12, 13).
In contrast to other Bcl-2 death proteins that are constitutively

expressed under basal conditions but require posttranslational
signals for activation, the Bnip3 promoter is strongly repressed
under basal conditions, owing to the presence of inhibitory re-
pressor complexes that block Bnip3 transcription (14). Consider-
ing that the Bnip3 promoter is activated during metabolic stress,
we reasoned that Bnip3 may underlie the mitochondrial injury and
cardiotoxic effects associated with DOX. In the present work, we
tested this possibility and found new, compelling evidence that
Bnip3 is a molecular effector of DOX-induced cardiotoxicity in
vivo and in vitro. We show that mechanistically, DOX triggers the
loss of mitochondrial uncoupling protein 3 (UCP3) and cyto-
chrome c oxidase (COX) subunit 1 (COX1) complexes, impairs
respiratory capacity, and promotes necrotic cell death of ventric-
ular myocytes through a mechanism that is mutually dependent on
and obligatorily linked to Bnip3.

Materials and Methods
Cell Culture and Transfection. Postnatal rat cardiac myocytes were isolated
from 1- to 2-d-old Sprague–Dawley rats and subjected to primary culture as
described previously. Cells were treated with DOX (5 or 10 μM; Pfizer) for
18 h. Cells were infected with adenoviruses encoding Bnip3 shRNA or a
carboxyl terminal domain mutant of Bnip3 defective for mitochondrial tar-
geting, designated Bnip3ΔTM, as reported previously (10, 15, 16).

DOX Treatment in Vivo.Mice germ lines deleted for Bnip3 were characterized
and reported previously (11). WT or Bnip3−/− mice aged 8–10 wk received
a single i.p. injection of 0.9% physiological saline (vehicle control) or DOX
(20 mg/kg) as described previously (17). Serial echocardiography was per-
formed on all mice at baseline and daily for up to 10 d after saline or DOX
treatment. Cardiac chamber size, left ventricular function, and endocardial
peak velocity (Vendo) were evaluated by tissue Doppler imaging (18). Mice
exhibiting a Vendo <1 cm/s were killed as a humane endpoint (18, 19). Hearts
from saline-treated and DOX-treated mice were excised and processed for
ultrastructural analysis by electron microscopy as reported previously (20, 21).
In brief, hearts were fixed in 2% (wt/vol) glutaraldehyde and cut into <1-mm
cubes from four random areas of the left ventricle free wall between the
midregion and apex. Tissues were osmicated in 2% OsO4, followed by stan-
dard tissue embedding in Epon. Ultrathin sections fromWT and Bnip3 −/− mice
were stained with uranyl acetate and lead citrate and examined for ultra-
structural details. A total of 3,000 cells for each condition were analyzed.
Cardiac cell lysate and RNA from hearts were processed for Western blot and
quantitative PCR (qPCR) analyses, as reported previously (10).

Cell Viability. Postnatal ventricular cardiomyocytes were stained with the vital
dyes calcein acetoxymethylester (calcein-AM) and ethidium homodimer-1
(each 2 μM) to visualize live (green) and dead (red) cells, respectively, by
epifluorescence microscopy. At least ≥200 cells were counted from three
independent experiments using three replicates for each condition tested.
Data are expressed as the mean ± SE percent of dead cells from control (22).
Lactate dehydrogenase (LDH) (Sigma-Aldrich) was assessed in the superna-
tant collected from the saline- or DOX-treated cells and from mouse serum,
in accordance with the manufacturer’s instructions. cardiac troponin T (cTnT)
was assessed by immunoassay (Troponin T kit 04491815 and Cobas e 601
analyzer; Roche Diagnostics). High-mobility group box 1 (HMGB1) protein
was detected by immunostaining of cardiac myocytes using a rabbit anti-
body directed against HMGB1 (1:50 dilution; Cell Signaling) and secondary
goat anti-rabbit conjugated Alexa Fluor 488 (1:1,000; Molecular Probes).

Western Blot Analysis and Immunoprecipitation. Western blot analysis was per-
formed for protein expression on cell lysate extracted from cardiac myocytes as
reportedpreviously. Protein extractswere resolved ondenaturing SDS/PAGEgels
transferred to nitrocellulose membranes. The filters were probed with primary
murine antibody directed against Bnip3 as reported previously. All antibodies
were used at 1:1,000 dilution in 2% BSA containing 0.1% TBS-T overnight at

4 °C. Bound proteins were detected using secondary HRP-conjugated anti-
mouse or anti-rabbit antibodies by enhanced ECL (Pharmacia) (23). For immu-
noprecipitation studies, ventricular myocyte lysate was immunoprecipitated
using SantaCruz Immunoprecipitation kit and antibodies to UCP3 (Sigma-
Aldrich; catalog no. U7757) or COX1 (Abcam; catalog no. ab14705).

mPTP Opening, Mitochondrial ΔΨM, ROS, and Mitochondrial Calcium. To
monitor mPTP opening, myocytes were incubated with 5 μmol/L calcein-AM
(Molecular Probes) in the presence of 2–5 mmol/L cobalt chloride, as
reported previously (24). Changes in integrated fluorescence intensity served
as an index of mPTP opening. Cells were visualized with an Olympus AX-70
Research fluorescence microscope. Mitochondrial ΔΨM was assessed by
epifluorescence microscopy by incubating cells with 50 nM tetra-methyl-
rhodamine methyl ester perchlorate (TMRM) (Molecular Probes) (22). To
monitor ROS production, cells were incubated with 2.5 μM dihydroethidium
(Molecular Probes). Cells were visualized by epifluorescence microscopy as
described previously (24). Mitochondrial calcium loading in cardiac myocytes
in the absence and presence of DOX was assessed by monitoring dihydro-
rhodamine-2 fluorescence (Molecular Probes), as reported previously (25).

Mitochondrial Respiration in Vitro and in Vivo. Mitochondrial OCR was assessed
with a Seahorse XF24 Analyzer. In brief, cardiomyocytes were cultured in 24-
well plates, followed by the sequential addition of oligomycin (1 μM), FCCP (2-
[2-[4-(trifluoromethoxy)phenyl]hydrazinylidene]-propanedinitrile) (1 μM), and
rotenone (1 μM) combined with antimycin (1 μM) as reported previously
(26). After OCR measurement, cells were fixed and stained with Hoechst
33258 nuclear dye. Plates were scanned to quantify cell numbers using a
Cellomics ArrayScan VTI HCS Reader (Thermo Scientific). OCR was normal-
ized to cell number per respective well. For in vivo mitochondrial respiration,
mitochondria were isolated from mouse hearts as described previously (27)
and analyzed for respiration with the Seahorse analyzer. Data are expressed
as mean ± SEM %OCR from three to five replicates.

Statistical Analysis. Multiple comparisons between groups were tested using
one-way ANOVA. Bonferroni post hoc tests were used to determine differ-
ences among groups. The unpaired two-tailed Student t test was used to
compare mean differences between two groups. Differences were consid-
ered statistically significant to a level of P < 0.05. For all in vitro studies, data
were obtained from at least three or four independent myocyte isolations;
for in vivo studies, data were obtained from 10–15 mice per group for each
condition tested unless indicated otherwise.

Results
Cardiac Ultrastructure and Mitochondrial Dysfunction in DOX-Treated
Mice. As a step toward understanding the molecular mechanisms
underlying the cardiotoxic effects of DOX, we assessed the impact
of DOX treatment on cardiac structure and function in vivo. In
contrast to vehicle-treated mice, DOX-treated mice exhibited im-
paired cardiac function and severe ultrastructural defects, including
disrupted sarcomeres, swollen mitochondria with loss of cristae,
and extensive vacuolization (Fig. 1A). Notably, in the DOX-treated
mice, heart mitochondria were severely impaired with respect to
respiratory function, as evidenced by a marked reduction in mito-
chondrial basal respiration rates compared with mitochondria
derived from vehicle-treated mice (Fig. 1B). Furthermore, a sig-
nificant increase in serum LDH release, indicative of necrotic cell
injury, was observed in the DOX-treated mice (Fig. 1C).

DOX Triggers Mitochondrial Perturbations and Necrotic Cardiac Cell
Death. Based on the extensive mitochondrial and cell injury in-
duced by DOX in vivo, we tested the impact of DOX on mito-
chondrial function and cell viability in postnatal ventricular
mycoytes in vitro. Mitochondrial perturbations consistent with
mPTP opening and loss of ΔΨm were observed in DOX-treated
cardiac myocytes (Fig. 2A). Furthermore, vital staining of cells
revealed a marked dose-dependent decline in cell viability in
DOX-treated cells compared with vehicle-treated control cells
(Fig. 2 B and C), a finding consistent with the DOX-induced
mitochondrial defects. In addition, necrosis markers, including
loss of nuclear HMGB1 (Fig. 2D), and release of LDH and cTnT
were observed in cardiac myocytes treated with DOX. These
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findings are in agreement with our in vivo data and suggest that
DOX triggers mitochondrial perturbations and necrotic death of
cardiac myocytes.

Bnip3 Is Activated in Ventricular Myocytes Treated with DOX. We pre-
viously established that the inducible death protein Bnip3 provoked
mitochondrial perturbations and cell death of cardiac myocytes with
features of necrosis (10, 28). Because the mitochondrial injury in-
duced by DOX is consistent with mitochondrial defects induced by
Bnip3, we reasoned that DOX-induced mitochondrial injury may
involve Bnip3. To formally test this possibility, we first assessed
whether Bnip3 mRNA and protein expression levels were altered in
postnatal ventricular myocytes in vivo and in vitro after DOX
treatment. As demonstrated by qPCR and Western blot analysis
(Fig. 3 A and B), compared with vehicle-treated mice, DOX-treated

mice exhibited markedly increased Bnip3 mRNA and protein
expression levels. Furthermore, a dose-dependent increase in Bnip3
protein expression was observed in ventricular myocytes treated
with DOX in vitro (Fig. 3C), a finding consistent with our in
vivo data.
Earlier work by our laboratory established the localization of

Bnip3 to mitochondria via its carboxyl-terminal transmembrane
domain as a crucial factor provoking mitochondrial defects and
cell death of ventricular myocytes (29). Thus, we tested whether
the association of Bnip3 and mitochondria is altered in cells
treated with DOX. Bnip3 was detected in the S-100 cytoplasmic
and mitochondrial fraction of vehicle-treated control cells (Fig.
3D), but was preferentially detected in the mitochondrial frac-
tion of cells treated with DOX, a finding concordant with our
previously published work on the increased mitochondrial lo-
calization of Bnip3 under stress conditions (9).
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Fig. 1. DOX provokes ultrastructural defects and mitochondrial injury in vivo.
(A) Representative electron micrograph images of murine cardiac muscle de-
rived from mice treated with saline or DOX (single i.p injection, 20 mg/kg) at
day 5 postinjection. (Upper Left) Saline-treated control mice. (Upper Right)
Magnified section showing normal cardiac ultrastructure. (Lower Left) Repre-
sentative mouse hearts after DOX treatment. (Lower Right) Magnified section
showing ultrastructural defects including disrupted sarcomeres, mitochondrial
swelling, and vacuolization. Red arrows denote membrane structures indicative
of autophagosomes. (Magnification: 5,800×.) (B) Basal respiration of cardiac
mitochondria derived from vehicle- and DOX-treated mouse hearts. OCR was
measured with a Seahorse metabolic analyzer (Materials and Methods).
(C) Serum LDH release frommice treated with saline or DOX. Data are presented
as mean ± SEM. P < 0.05. *Statistically different from saline treatment.
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Fig. 2. DOX triggers mitochondrial perturbations and necrotic death of cardiac
myoctyes. (A) Epifluorescence microscopy of control (CTRL) and DOX-treated
cells for mPTP opening (Left), ROS (Center), and mitochondrial ΔΨm (Right); see
Materials and Methods for details. (B) Cell viability of ventricular myocytes
stained with vital dyes calcein-AM and ethidium-homodimer to detect the live
(green) and dead (red) cells, respectively, in the absence and presence of DOX
treatment (5 and 10 μM) for 18 h. (C) Histogram of the quantitative data in B.
Data are expressed as mean ± SEM from at least four independent cell culture
experiments counting ≥200 cells for each condition tested. P < 0.05. *Statistically
different from control. (D) Epifluorescence microscopy of cardiac myocytes
stained for nuclear HMGB1 protein (green nuclear staining) in vehicle-treated
control cells and cells treated with DOX (10 μM) for 18 h.
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DOX Disrupts Mitochondrial COX1-UCP3 Complexes and Respiration.
The transfer of electrons via electron transport chain complexes
on the inner mitochondrial membrane is essential for establish-
ing the electromotive force and proton gradient for maintaining
mitochondrial ΔΨm. Given that mitochondrial-associated Bnip3
disrupts ΔΨm, we reasoned that the observed loss of ΔΨm and
increased ROS in cells treated with DOX might be related to a
disruption of respiratory chain activity. To test this possibility,
we assessed mitochondrial respiration in control cells and DOX-
treated cells. Compared with vehicle-treated cells, the DOX-treated
cells exhibited a marked reduction in maximal respiratory capacity,
as evidenced by reduced oxygen consumption (Fig. 4 A and B). The
DOX-treated cells had an almost negligible respiratory reserve
capacity, indicating severely impaired mitochondrial respiration
(Fig. 4C). Interestingly, mitochondrial respiration and reserve re-
spiratory capacity (RRC) were similarly impaired in cells over-
expressing Bnip3 (Fig. 4 D–F), a finding concordant with impaired
mitochondrial respiration and loss of ΔΨm in the DOX-treated
cells. Mitochondrial respiration involves electron transport chain
complexes I–IV. Notably, COX or complex IV, the terminal com-
plex required for reduction of molecular oxygen in normal cells, is
composed of 13 individual subunits. The catalytic activity of COX1
is required for reduction of molecular oxygen to water. Preliminary
studies revealed protein interactions between COX1 and UCP3.
Because uncoupling proteins are important regulators of ΔΨm

and ROS, we tested whether the observed loss of ΔΨm and in-
creased ROS in DOX-treated cells is related to alterations in
COX1-UCP3 complexes. As shown on Western blot analysis
(Fig. 4E), compared with vehicle-treated control cells, DOX-
treated cells exhibited markedly reduced interactions between
COX1 and UCP3, a finding consistent with our data showing
increased ROS in DOX-treated cells (Fig. 2A). Taken together,
these findings suggest that DOX disrupts COX1–UCP3 inter-
actions and impairs respiration.

DOX Provokes Mitochondrial Perturbations Contingent on Bnip3. To
explore the possibility that Bnip3 underlies the mitochondrial
defects induced by DOX, we tested whether suppressing Bnip3
would influence the mitochondrial perturbations and cell death
induced by DOX. For these studies, we used shRNA directed
against Bnip3, which we had previously demonstrated to selectively
and efficiently knockdown Bnip3 expression in cardiac myocytes
(23, 24). shRNA directed against Bnip3 suppressed DOX-induced
mitochondrial perturbations, including mPTP opening, ROS pro-
duction, and loss of ΔΨm (Fig. 5 A–D). Further Western blot
analyses (Fig. 5E) verified knockdown of Bnip3 in DOX-treated
cells under the conditions shown in Fig. 5A.
Importantly, either knockdown of Bnip3 by shRNA or a carboxyl

terminal transmembrane domain mutant of Bnip3 (Bnip3ΔTM),
previously shown by our laboratory to be defective for inte-
grating into mitochondria in cardiac myocytes and provoking
cell death (9), normalized mitochondrial calcium (Fig. 6A).
Perhaps most compelling is our finding that loss of COX1-UCP3
complexes in cells treated with DOX was completely restored by
the Bnip3ΔTM mutant defective for mitochondrial integration
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(Fig. 6B). In this context, the dimerization of Bnip3ΔTM with
endogenous Bnip3 would sequester Bnip3 activity, thereby
acting as a dominant-negative inhibitor of Bnip3 (9). Western blot
analysis confirmed that WT Bnip3 was localized to the mitochon-
drial fraction, whereas the Bnip3ΔTM mutant was absent from
mitochondria and detected mainly in the cytoplasmic fraction (Fig.
6C), a finding concordant with our previous work (9, 29). Fur-
thermore, knockdown of Bnip3 restored maximal mitochondrial
respiration (MMR) and RRC (Fig. 6 D and E), as well as cell vi-
ability, in DOX-treated cells (Fig. 7 A and B). Notably, DOX
treatment induced a significant increase in necrosis markers, in-
cluding release of LDH and cTnT, and knockdown of Bnip3 sup-
pressed DOX-induced LDH and cTnT release (Fig. 7 C and D).
Taken together, these findings strongly suggest that Bnip3 triggers
mitochondrial injury and necrotic cell death induced by DOX.

DOX-Induced Necrotic Cell Injury Is Contingent on Bnip3 in Vivo. To
verify the physiological significance of our in vitro findings, we tested
the impact of DOX on WT mice and mice with a germ line deleted
for Bnip3 in vivo. In contrast to WT mice treated with DOX, which
exhibited severe ultrastructural defects, including misaligned sarco-
meres, disrupted mitochondrial cristae, vacuolization, and increased

serum LDH release, the Bnip3−/− mice were relatively resistant to
DOX treatment, displaying normal cardiac ultrastructure, intact
mitochondrial cristae, minimal vacuolization, and reduced serum
LDH release (Fig. 8 A and B). Moreover, a marked increase in
Bnip3 gene expression was observed in WT mice treated with
DOX, a finding concordant with the serve ultrastructural defects
in these hearts. Furthermore, Bnip3 mRNA was not detected in
Bnip3−/− mice in absence or presence of DOX, verifying as a
housekeeping control that the Bnip3−/− mice indeed were genet-
ically null for Bnip3 (Fig. 8C). In addition, in contrast to vehicle-
treated WT mice, DOX-treated mice exhibited mitochondrial
respiratory chain defects, including reduced MMR and RRC, in-
dicating severely impaired mitochondrial respiration is severely
impaired (Fig. 9 A–C). Importantly, DOX-treated Bnip3−/− mice
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had normal respiratory indices that were indistinguishable from
those measured in vehicle-treated WT or Bnip3−/− control mito-
chondria. Furthermore, DOX-treated Bnip3−/− mice exhibited
relatively normal cardiac function (Fig. 9D). Importantly, the
DOX-treated WT mice had a significantly higher mortality rate
than the DOX-treated Bnip3−/− mice, approaching 90% by day
10 (Fig. 9 E and F). These findings are concordant with our in
vitro data and strongly support our contention that Bnip3 underlies
the cardiotoxic effects of DOX.

Discussion
The molecular mechanisms that underlie the cardiotoxic effects
of DOX remain cryptic. Although several paradigms, including
increased ROS production, calcium and iron overload, and al-
tered gene expression, have been advanced as putative un-
derlying mechanisms, to date none has provided a unifying
explanation to account for the cellular defects (1, 3, 30–32). In
this report, we provide new, compelling evidence that DOX
provokes mitochondrial perturbations and cell death of ventric-
ular myocytes through a mechanism that involves Bnip3. Fur-
ethermore, we reveal a novel signaling pathway that operationally
links mitochondrial respiratory defects and necrotic cell death to
the cardiotoxic effects of DOX.
We previously identified Bnip3 as critical regulator of mito-

chondrial function and cell death of cardiac myocytes during hyp-
oxic stress (9, 10, 14). We attributed this function to mPTP opening
and loss of mitochondrial ΔΨm triggered by the mitochondrial
targeting of Bnip3. The finding that Bnip3 gene and protein ex-
pression are markedly increased by DOX is compelling and iden-
tifies Bnip3 as putative downstream effector of DOX toxicity.
Indeed, the link between Bnip3 and the cytotoxic effects of DOX is
profound, as demonstrated by the fact that WT mice treated with
DOX exhibited severe ultrastructural defects, including disrupted
sarcomeres, swollen mitochondria with loss of cristae, impaired
mitochondrial respiration, and severe vacuolization consistent

with autophagosomes, whereas DOX-treated Bnip3−/− mice were
comparably resistant to the cytotoxic effects of DOX, exhibiting
normal cardiac ultrastructure and mitochondria with intact cristae
and normal respiration.
Based on the foregoing findings, our data support a model in

which the cytotoxic effects of DOX are mediated by a mecha-
nism involving Bnip3. Indeed, we have showed through not one,
but three independent approaches that disruption of Bnip3
abrogates the mitochondrial perturbations and cell death of
ventricular myocytes induced by DOX. This idea is concordant
with the favorable cardiac function data and reduced mortality of
DOX-treated Bnip3−/− mice.
We previously established that the mitochondrial targeting of

Bnip3 is crucial for provoking mPTP opening and necrotic cell
death of ventricular myocytes; however, the underlying mecha-
nisms remained unclear (9, 10). Thus, another interesting and
important aspect of the present study is our finding of dramatically
increased mitochondrial-associated Bnip3 in cells treated with
DOX, in concert with a marked reduction in COX1–UCP3 in-
teraction, as well as loss of ΔΨm and increased ROS production.
Uncoupling proteins play a critical role in the maintenance of
mitochondrial ΔΨm, and UCP3 is the dominant uncoupling
protein isoform in the heart (33). In contrast to UCP1, which
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predominately regulates thermogenesis in brown adipose tissue,
UCP2 and UCP3 regulate mitochondrial ΔΨm by balancing oxida-
tive metabolism and respiration in skeletal and cardiac muscle by
diverting proton flux across the mitochondrial inner membrane away
from the F0/F1-ATPase (33, 34). Loss of UCP3 function promotes
increased mitochondrial ROS production and loss of ΔΨm (33).
The finding that Bnip3 knockdown or a carboxyl trans-

membrane domain mutant of Bnip3 defective for integrating in
mitochondrial membranes rescued disruption of COX1-UCP3
complexes, mitochondrial respiration, ROS production and
other mitochondrial perturbations not only argues for the im-
portance of COX1–UCP3 interaction in normal mitochondrial
respiration, but also highlights its importance as critical down-
stream target of Bnip3 for DOX-induced mitochondrial dys-
function. In this regard, Morrill et al. (35) recently identified
transmembrane helices within COX1, 2, and 3 critical for proton
transport channels across the mitochondrial matrix and inner
membrane space. Given that UCP3 also can influence proton
flux across the inner mitochondrial membrane, the association of

UCP3 and COX1 may play a critical role in regulating the proton
gradient across the inner membrane space and matrix. This
would invariably influence ROS production and ATP synthesis.
Consequently, based on the present study, we envision a

model in which the integration of Bnip3 into mitochondrial
membranes in DOX-treated cells would disrupt the integrity of
the mitochondrial inner membrane, resulting in ROS production
through loss of COX1-UCP3 complexes, mPTP opening, and
necrotic cell death (Fig. S1). At present, however, whether the
observed loss of COX1-UCP3 complexes and subsequent mito-
chondrial injury are regulated directly or indirectly by Bnip3
remains unclear. We did not assess protein–protein interactions
in this study, but speculate that Bnip3 may displace COX1 from
UCP3 or, alternatively, influence COX1–UCP3 associations by
impinging other mitochondrial proteins, such as VDAC. This
view is supported by a recent report demonstrating the ability of
the carboxyl-terminal transmembrane domain of Bnip3 to en-
gage the mitochondrial inner membrane (9, 36) and our present
finding that a mutation of Bnip3 defective for mitochondrial
targeting is sufficient to prevent disruption of the COX1-UCP3
complex in cells treated with DOX. The mechanism by which
Bnip3 disrupts COX1–UCP3 association is unknown and is an
active area of investigation in our laboratory. Nonetheless, our
data strongly suggest that COX1-UCP3 complexes are disrupted
in cells treated with DOX in manner contingent on Bnip3.
Another interesting finding of the present study is the presence

of DOX-induced mitochondrial abnormalities consistent with
mitophagy. Although autophagy/mitophagy was not the focus of this
study, we observed a dramatic increase in vacuolization and double
membrane structures containing mitochondria consistent with
mitophagy in the hearts of mice after DOX treatment. The signif-
icance of this observation is unknown; however, autophagy beyond
a certain threshold can promote death (16, 37–39). This is con-
cordant with an earlier report demonstrating that DOX-induced
autophagy is detrimental and promotes cell death (6). Concordant
with this idea, autophagosomes were readily detected in hearts of
DOX-treated WT mice, coinciding with necrosis; however, vacuo-
lization and necrotic injury were virtually absent in the hearts of
DOX-treated Bnip3−/− mice. These findings are in complete
agreement with our cell viability data and the observed resistance of
Bnip3−/− mice to DOX-induced injury. The fact that DOX induced
autophagosomes in vivo as well as classical markers of necrosis (i.e.,
LDH and cTnT release) were normalized by inhibition of Bnip3
suggests that Bnip3 regulates both of these cellular processes. The
finding that inner mitochondrial membrane integrity, which has
been linked to mPTP opening and necrosis (40, 41), was abrogated
by Bnip3 knockdown in cardiac myocytes treated with DOX
strongly suggests that inner mitochondrial membrane defects in-
duced by Bnip3 are likely the primary underlying defects associated
with DOX cardiotoxicty. This idea is consistent with the fact that
mitochondrial calcium loading, mPTP opening, and loss of mi-
tochondrial ΔΨm in cells treated with DOX were normalized by
inhibition of Bnip3. These findings support a model in which
Bnip3 mediates the underlying cytotoxic effects of DOX by dis-
rupting mitochondrial function (9, 10, 28). Based on our findings,
it is tempting to speculate that because the heart is so abundantly
rich in mitochondria, it is susceptible to DOX toxicity.
Our present findings demonstrate a novel signaling pathway that

functionally linksmitochondrial injury and cell death inducedbyDOX
toBnip3.Our data provide the first direct evidence thatDOX induces
cell deathof cardiacmyocytes throughamechanism that is obligatorily
linkedandmutuallydependenton themitochondrial injury inducedby
Bnip3. Thus, interventions designed to selectively inhibit Bnip3 sig-
naling may prove beneficial in mitigating the cardiotoxic effects of
DOX in cancer patients undergoing chemotherapy.
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